Sovituskomennot GeoGebrassa

[16.10. korjailin kirjoitusvirheitä ja lisäsin pdf:n tarinan loppuun]

Funktion sovittaminen pisteistöön on tyypillinen ongelma, jonka ratkaisemiseminen onnistuu mukavahkosti tietokoneohjelmien avulla. GeoGebrassa on oma työkalu sovitusongelmien ratkaisuun. Lisäksi ohjelmassa on runsaasti sovituskomentoja.

Kahden muuttujan regressio -työkalu

Tutkitaan ensin Kahden muuttujan regressio -työkalua. Seuraavissa esimerkeissä käytetään kuvan taulukkolaskennan lukuja.

Kuva1.png

Valitaan taulukkolaskennan alue B1:G2 ja työkalu Kahden muuttujan regressioanalyysi. Avautuvassa ikkunassa valitaan Analysoija GeoGebra avaa Data-analyysi-ikkunan. Regressiomalli-valikosta voi valita erilaisia sovituksia: Lineaarinen, Logaritminen, Polynomi, Potenssi, Eksponentiaalinen, Kasvu, Sin ja Logistinen.

Kuva2

Ikkunan vasemman yläreunan käsi -ikonin avulla voi muuttaa valittua lukualuetta taulukkolaskennassa, seuraava ∑x -painike näyttää tilastollisia tunnuslukuja liittyen sovitukseen, seuraava painike näyttää mittausdatan, seuraava jäännöskuvion ja viimeinen vaihtaa datan x– ja y-koordinaatit keskenään. Data-ikkunassa voi poistaa yksittäisiä pisteitä ja Jäännöskuvio kertoo pisteiden y-koordinaattien poikkeaman pystysuunnassa valitusta sovituskäyrästä. Oikean yläkulman pienen kolmion takaa löytyy ikkuna, jossa voi lisätä viivadiagrammin, ruudukon ja muuttaa kuvaajan mittasuhteita. Kolmion oikealla puolella olevan pikkuneliön avulla saa kuvaa kopioitua suoraan piirtoalueelle. Siellä on helpompi muokata akseleita ja lisätä akseleille nimet ja yksiköt. Samalla kun kuvaaja siirtyy piirtoalueelle, niin myös Algebra-ikkunaan ilmestyy sovitettu funktio.

Kuva3

Sovituskomennot

Tarkastellaan sitten syöttökentässä ja CASissa käytettäviä sovituskomentoja. Kahden muuttujan regressio -työkalun regressiomallifunktiot käyttäytyvät samalla tavoin kuin sovituskomennot. Komennot tarvitsevat syötteekseen pistelistan. Ennen kuin pistelista luodaan, niin kannattaa käydä valitsemassa Asetukset -> Nimeäminen -> Nimeäminen pois.  Näin pisteiden nimet eivät ilmesty piirtoalueelle. Valitaan taulukkolaskennan alue B1:G2 ja työkalu Luo pistelista.

Kuva4

Avautuvassa ikkunassa voi muuttaa pistelistan nimen, oletuksena se on l1. Annetaan pistelistalle nimi ”pisteet”. Komento SovitaSuora(pisteet) (FitLine) sovittaa pienimmän neliösumman avulla suoran pisteisiin ja antaa sille nimen f. Komento SovitaSuoraX(pisteet) (FitLineX) tekee saman sovituksen, mutta suorat vaihtaa x– ja y-koordinaatit sovitusalgoritmissa. Normaalitilanteessa pienimmän neliösumman sovituksessa ajatellaan, että x-koordinaatit ovat riippumattomia (selittäviä) ja y- koordinaatit riippuvia (selitettäviä) muuttujia. SovitaSuoraX muuttaa y-koordinaatit riippumattomiksi sovitusalgoritmiin.

Kuva5

Sovitetun suoran kulmakertoimen arvon (kuvassa muuttuja a) saa komennolla Kulmakerroin(f)ja vakiotermin arvon (kuvassa muuttuja b) hieman hankalammin Alkio(Kertoimet(f(x),2)).Kertoimetluo listan polynomin f(x)kertoimista ja Alkio(lista, 2)poimii listan toisen jäsenen eli tässä tapauksessa vakiotermin. SovitaSuora-komento poikkeaa muista sovita-komennoista, sillä se tuottaa suoran yhtälön, muut sovita-komennot tuottavat funktion.

Polynomisovitukset tuotetaan komennolla SovitaPolynomi( <Pistelista>, <Polynomin asteluku> ) (FitPoly). Komento SovitaPolynomi(pisteet, 2)luo toisen asteen funktion. Pistelistan tilalla voi olla myös vapaalla kädellä piirretty funktio. Sellaisen saa luotua Piirtoalueen Vapaakäsi-työkalulla. Kuvassa f(x) on toisen asteen sovitus ja p(x) viidennen asteen sovitus pisteet listaan. Funktio h(x) on paraabelisovitus vapaalla kädellä piirrettyyn funktioon g(x).

Algebraikkunassa olevia funktioita voi derivoida, integroida Syöttökentässä tai CAS:issa ja myös niiden ominaisuuksia voi tutkia Funktion-analysointi työkalulla. Se löytyy Piirtoalueen työkaluista Kulma-työkalun ”takaa”.

Kuva6

Eksponentiaalista kasvua varten on sovitukset SovitaEksp(FitExp) ja SovitaKasvu (FitGrowth). SovitaEksp(pisteet)tuottaa muotoa f(x) = a·eb·olevan funktion ja SovitaKasvutyyliin g(x) = a·bx. GeoGebran kannalta kyseessä on sama funktio, vain esitystapa on erilainen. Mikäli tarvitset laskuissasi luonnollisen logaritmin kantalukua e, niin sen saa GeoGebrassa näppäinkomennolla Alt-e tai Syöttökentän oikean reunan symbolivalikosta. GeoGebra 6:ssa ja π löytyvät myös virtuaalinäppäimistöltä. Näiden komentojen syötelistan y-koordinaattien tulee olla samanmerkkisiä.

Kuva7

SovitaPotenssi(pisteet)(FitPow) sovittaa funktion, joka on muotoa f(x) = a·xb.Pistelistan x– ja y– koordinaattien tulee olla positiivisia.

SovitaLogist(pisteet)(FitLogistic) sovittaa muotoa f(x) = a/(1 + b e^(- k x)) olevan logistisen funktion. Pistelistan y-koordinaattien tulee olla positiivisia. Pisteiden pitää olla myös riittävästi S:n muotoisella käyrällä.

SovitaLog(pisteet)(FitLog) sovittaa muotoa p(x) = a+ bln(x) olevan funktion. Pisteiden x-koordinaattien tulee olla positiivisia.

Sin-sovitusta varten toin taulukkolaskentaan heiluriin liittyvää mittausdataa. Loin datasta pistelistan nimeltä heiluri. SovitaSini(heiluri) (FitSin) tuottaa muotoa h(x) = a+ bsin(c x+ d) olevan funktion. Kokemus osoittaa, että jos pisteitä on runsaasti, suuruusluokkaa satoja, niin komento ei toimi aina täydellisesti.

Kuva8

Usein kun sovitetaan mittausdataa, tulee tarve määrittää itse sovitusfunktio. Jos haluaa pakottaa sovitussuoran tai paraabelin kulkemaan origon kautta, niin komennolla Sovita( <Pistelista>, <Funktiolista> )(Fit) se onnistuu. GeoGebra määrittää funktiolistan kertoimet sovituskäyrälle. Niinpä Sovita(pisteet, {x})sovittaa origon kautta kulkevan suoran ja Sovita(pisteet, {x, x^2})origon kautta kulkevan toisen asteen polynomin.

Ehkä mielekkäämpi tapa käyttää Sovita-komentoa on kirjoittaa sovitettava lauseke komennon syötteeksi tyyliin Sovita( <Pistelista>, <Funktio> ). Origon kautta kulkeva suora olisi sovitettu komennolla Sovita(pisteet, k x).

Syksyn 18 fysiikan ylioppilaskokeessa oli tehtävä, jossa oli mittaustuloksia kahvin lämpötilasta ajan funktiona. Luodaan mittaustuloksista pistelista kahvi. Mittaustulokset näyttävät noudattavan Newtonin jäähtymislakia. Komento Sovita(kahvi, a b^x + c) tuottaa funktion, joka kulkee melkoisen hyvin pisteiden kautta. Tosin pisteiden alku- ja loppupäät poikkeavat selvästäsi mallin tuottamasta käyrästä. Komentoa käytettäessä GeoGebra luo vakioita vastaavat liu’ut. Lisäksi pitää tarkistaa Algebra-ikkunasta, että vakioina käytettävät muuttujat eivät ole aiemmin määriteltyjä.

Splini( <Pistelista> )-komento (Spline) luo pistelistan pisteiden kautta kulkevan splinikäyrän. Splini on paloitellusti määritelty parametrinen käyrä. Palat koostuvat kolmannen asteen käyristä siten, että liitoskohdissa käyrä on jatkuva ja derivoituva. Toki käyrän derivoiminen ei onnistu kovin helposti, koska kyseessä on parametrinen käyrä. Käyrälle voi piirtää tangentin jokaiseen pisteeseen. Korkeamman asteen splinejä saa syntaksilla Splini( <Pistelista>, <Asteluku ≥ 3> ). Splinejä ei kannata käyttää, jos mittaustuloksissa on paljon ”virhettä” koska käyrä kulkee kaikkien pisteiden kautta ilman pehmennystä.

Kuvassa f(x)=SovitaKasvu(kahvi),g(x)=Sovita(kahvi, a+b*c^(x))ja d: Splini(kahvi).

Kuva9

Implisiittinen sovitus

Implisiittinen sovittaminen pyrkii tuottamaan n:n asteen xy-tasokäyriä. Pisteiden lukumäärän tulee olla vähintään n(n + 3)/2 pistettä. Yritetään piirtää vapaalla kädellä tietokoneen hiirellä yksikköympyrä mahdollisimman hyvin. Luodaan ensin piste A = (0,1). Jotta pisteen koordinaatit saadaan tallentumaan taulukkolaskentaan, sen ikkunan tulee olla näkyvissä.

Kuva91

Valitaan hiiren oikealla painikkeella piste A ja avautuvasta valikosta Tallenna taulukkoon. Kun avautuneen ikkunan sulkee, voi alkaa liikuttaa pistettä A ja pisteen koordinaatit tallentuvat taulukkolaskentaan. Kun taulukkolaskennassa valitaan A:n liikkuessa luodut pisteet jaLuo pistelista, niin pisteet ilmaantuvat piirtoalueelle ja oletuksena syntyy lista l1. Komennolla SovitaImplisiittisesti(l1, 2) (FitImplicit) ohjelma tuottaa toisen asteen käyrän. Algebraikkunassa GeoGebra ilmoittaa, että se on Implisiittinen käyrä.  Katsomalla sitä tunnistan tai paremminkin arvaan, että kyseessä on ellipsi. Kokeile itse korkeamman potenssin sovituksia ja jos olet rohkea, niin pohdi miten algoritmit ovat niihin päätyneet.

Jostain kumman syystä GeoGebra ei tunnista, että implisiittinen käyrä aon oikeasti kartioleikkaus. Niinpä Syöttökentän komennolla ymp = aohjelma luo kartioleikkauksen siten, että se toimii GeoGebran kartioleikkauskomentojen kanssa.  Kartioleikkausten symmetriakeskus saadaan komennolla Keskus(ymp),polttopisteetPolttopiste(ymp)ja ellipsin eksentrisyys komennolla Eksentrisyys(ymp).

Kuva92

 

Mikäli haluat tutusta monipuolisiin esimerkkeihin GeoGebra sovituskomennoista, niin kannattaa hankkia ruotsalaisten ystävieni Jonaksen ja Thomaksen ”Mathematical Modeling, Applications with GeoGebra” -kirja. Kirjassa on useita kymmeniä pisteistön sovittamiseen liittyviä esimerkkejä liittyen muun muassa kemiaan, fysiikkaan, lääketieteeseen ja taloustieteeseen. Tätäkin kirjoittaessa olen selannut kirjaa aika paljon.

Lue lisää

Korhonen, Luoma-aho, Rahikka. Geogebra -opas. MFKA-Kustannus 2012.

https://mikonfysiikka.wordpress.com/2018/05/15/listat-geogebrassa/

Hall, Lingejärd. Mathematical Modeling, Applications with GeoGebra. Wiley 2017.

Kirjan materiaalisivu. http://bcs.wiley.com/he-bcs/Books?action=index&itemId=1119102723&bcsId=10240

GeoGebran käyttöohjeen Fit-komennon wiki-sivu https://wiki.geogebra.org/en/Fit_Command

Spline Wikipediassa. https://en.wikipedia.org/wiki/Spline_(mathematics)

Tulostettava versio

tarina pdf-muodossa

 

Mainokset

Listat GeoGebrassa

Listat ovat GeoGebran tapa muodostaa kokoelmia erilaista objekteista. Esimerkiksi yhtälön ratkaisujoukko on GeoGebrassa lista. Mikäli haluaa oppia tekemään monimutkaisempia sovelluksia, niin kannattaa opiskella mitä listoilla voi tehdä.

Tämän pitkähkön artikkelin jatko-osana tullee ilmestymään artikkelit Sovitus-, Jono- ja Zip -komennoista.

Lista

Lista on kokoelma GeoGebran objekteja. Listan jäsenet eli alkiot erotellaan pilkuilla ja ympärille laitetaan aaltosulkeet {}. Matematiikassa listaa vastaa lähinnä jono, ohjelmointia harrastaneille listan syntaksi on perinteinen. Listassa voi olla sama objekti jäsenenä useamman kerran ja listan jäsenten järjestyksellä on väliä.

{1, 2} == {2, 1}
 → false

Yllä olevassa esimerkissä kaksi peräkkäistä =-merkkiä tuottaa GeoGebrassa totuusarvon. Pyrin kirjoittamaan siten, että GeoGebran komennot (eli funktiot) kirjoitetaan GeoGebra 5-version CAS:iin ja ne laatikoituna. GeoGebran CAS solun tulosteessa näkyy nuoli →. Kun tekstissä viittaan GeoGebran komentoon, niin laitan komennon nimen lihavoituna ja englanninkielisen version lihavoituna kursiivilla. Komennot voi toki kirjoittaa myös syöttökenttään ja GeoGebran 6-versiosta lähtien näkyy Algebraikkunassa tuloste selkeästi. On muutamia listakomentoja, jotka eivät toimi CAS-ikkunassa.

Määritellään CAS:issa lista nimeltä L. GeoGebrassa muuttujan tai funktion määrittely tehdään merkkiparin ≔ avulla.

L := {-5, -2, 1, 4}
 → L:={-5, -2, 1, 4}

Tässä yhteydessä on hyvä oppia kolme eri merkitystä matematiikan yhtäsuuruusmerkille. GeoGebran CAS:issa ”=” tarkoittaa yhtälön yhtäsuuruutta y = 2 x + 1; yhtälöiden kuvaajat näkyvät piirtoalueella ja yhtälöistä voi CAS:issa ratkaista kirjainmuuttujia, ”≔” on muuttujan tai funktion määrittelyssä oleva merkki tyyliin;  a≔5 tai f(x)≔ 2x – 5 ja ==- tutkii totuutta 2==3. Seuraavissa esimerkeissä käytetään muuttujan L arvona kyseistä listaa. Listassa L on neljä alkiota eli sen Pituus (Lenght) on neljä.

Pituus(L)
 → 4

Listoille voi tehdä erilaisia matemaattisia operaatioita. Kannattaa kokeilla miten eri laskutoimitukset vaikuttavat listaan. Ja tietysti komennot Summa(Sum) ja Tulo(Product) toimivat.

2*L
 → {(-10), (-4), 2, 8}

L+L
 → {(-10), (-4), 2, 8}

L^2
 → {25, 4, 1, 16}

sin(L°)
 → {(-0.08715574274766), (-0.03489949670252), 0.01745240643728, 0.06975647374412}

Summa(L)
 → -2

Tulo(L)
 → 40

Listan n:s alkio saadaan Alkio-komennolla (Element). Alkio-komennossa on kaksi muuttujaa, lista ja järjestysluku.

Alkio(L, 3)
 → 1

Edellistä voi käyttää esimerkiksi seuraavasti. GeoGebran Ratkaise(Solve) komento ratkaisee yhtälön ja tuottaa ratkaisun listana, jossa ratkaisut ovat yhtälöinä. Tämä vastaa samaa, jos käytetään CAS:in Ratkaise-työkalua. Ratkaisut(Solutions)-komento tuottaa yhtälön ratkaisun tarkat arvot listana. Tutkitaan toisen asteen yhtälöä ja sen ratkaisuja. Laiskuuksissani määritän ensin funktion f ja käytän sitä komennoissa. Bonuksena GeoGebra piirtää kuvaajan Piirtoalueelle. Ratkaisut-komennon ratkaisulle käytän muuttujaa, jonka nimeän R:ksi.

f(x):=2x² - 4x – 5
 → f(x):=2x² - 4x – 5

Ra ≔ Ratkaise(f(x)=0)
{x = (-sqrt(14) + 2) / 2, x = (sqrt(14) + 2) / 2}

R:=Ratkaisut(f(x)=0)
{(-sqrt(14) + 2) / 2, (sqrt(14) + 2) / 2}

Lasketaan tarkistuksen vuoksi funktion arvo nollakohdissa ja yhtälön ratkaisujen tulo.

f(R)
 → {0, 0}

Alkio(R, 1)*Alkio(R,2)
 → -5/2

Toki edellisen olisi saanut laskettua tulon avulla.

Tulo(R)
 → -5/2

Tai käyttämällä yhtälöitä kertomalla yhtälöt puolittain.

Tulo(Ra)
 x^(2)= -5/2

Jono-komennon (Sequence) avulla voi helposti tuottaa erilaisia jonoja. Palaan Jono-komennon syvällisempään käyttöön ja sen syntaksiin tulevassa artikkelissa. Jono vastaa for-next -silmukkaa perinteisessä ohjelmoinnissa. Seuraavan esimerkin Jono-komennon ensimmäinen muuttuja on lauseke, tässä tapauksessa koordinaatiston piste (n, n^2), seuraavassa kerrotaan muuttuja nimi n, kolmas muuttuja on alkuarvo 0 ja viimeinen loppuarvo 5. Luodaan pisteitä koordinaatistoon.

 Pisteet: = Jono(n,n^2), n, 0, 5)
 → {(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)}

Koska lista Pisteet koostuu koordinaatiston pisteistä, niin sitä kutsutaan pistelistaksi. Taulukkolaskennassa on helppoa tuottaa pistelistoja. Valitaan kaksi saraketta ja hiiren oikean painikkeen valikosta Luo -> Pistelista. Kun tehdään toisen asteen polynomisovitus listan pisteille, saadaan tietysti alkuperäistä lauseketta vastaava polynomi. Fysiikan ja kemian opettajille GeoGebran Sovita-alkuiset komennot ovat aika mukavia, kun tutkitaan mittaustuloksia, palaan tähän aiheeseen myöhemmin.

SovitaPolynomi(Pisteet, 2)
 → x^2

Kuva1

Poimiminen ja lisääminen

Ensimmäinen(First)-komento tuottaa listan ensimmäisen alkion listana. Muistin virkistyksenä Alkio palauttaa alkion jäsenen, ei listaa. Useimmiten itse käytän Alkio-komentoa kun tarvitsen listan ensimmäistä arvoa.

Ensimmäinen(L)
 → {-5}

Alkio(L, 1)
 →-5

Viimeinen(Last) toimii kuten Ensimmäinen. Jostain kummasta syystä tätä kirjoitettaessa Alkio(L, Pituus(L)) tuottaa virheilmoituksen. Pitää selvittää asiaa.

Viimeinen(L)
 →{4}

Alkio(L, 4)
 →4

 Liitos (Append) lisää objektin listan loppuun, jostain kumman syystä se ei toimi etupuolelle, vaikka GeoGebran ohje niin kertookin.

Liitos(L,0)
 → {-5, -2, 1, 4, 0}

Liitä (Join) liittää yhden tai useamman lista yhdeksi.

 Liitä({1, 2, 3},{9, 8, 7})
 → {1, 2, 3, 9, 8, 7}

LisääListaan-komennon (Insert) avulla saa lisättyä alkioita haluamaansa paikkaan. Mikäli paikan järjestysluku on negatiivinen, niin paikka lasketaan lopusta alkaen Pythonin tyyliin.

LisääListaan( 13, {2,  4, 6, 8, 10}, 3)
 → {2, 4, 13, 6, 8, 10}

LisääListaan( {13, 42}, {2,  4, 6, 8, 10}, -3)
 → {2, 4, 6, 13, 42, 8, 10}

Poimi (Take) valitsee listasta alkioita. Ensimmäisessä esimerkissä poimitaan listan alkiot neljännestä alkiosta loppuun ja toisessa alkiot alemmassa toisesta neljänteen.

Poimi( {2, 4, 6, 8, 10}, 4)
 → {8, 10}

Poimi({2, 4, 6, 8, 10}, 2,4)
 → {4, 6, 8}

Poista(Remove)-komennon avulla voi poistaa alkioita jotka ovat toisessa listassa. Vain ensimmäinen alkio poistetaan.

Poista({1, 2, 2, 2, 3, 4, 5, 6, 7}, {2, 4, 6} )
 → {1, 2, 2, 3, 5, 7}

Edellisessä esimerkissä Poista-komento poisti toisen listan alkiot vain yhden kerran. Jos haluaa, että lista käyttäytyy kuin joukko-opillinen joukko, niin pitää käyttää apuna Yksinkertainen(Unique)-komentoa.

Yksinkertainen({1, 2, 2, 3, 4, 5, 6, 6})
 → {1, 2, 3, 4, 5, 6}

Joskus Jos-ehtoa käytettäessä Jono-komennon kanssa syntyy listoja, joissa on määrittelemättömiä alkioita. Ne saa pois PoistaMäärittelemätön(RemoveUndefined) -komennon avulla. Alla on etsitty kolmella jaollisia lukuja.

Lista:=Jono(Jos(mod(n, 3)==0,n), n, 10, 20)
 → {?, ?, 12, ?, ?, 15, ?, ?, 18, ?, ?}

PoistaMäärittelemätön(Lista)
 → {12, 15, 18}

Sekoittaminen ja arpominen

 Sekoita(Shuffle)-komento sekoittaa listan alkiot ja tuottaa uuden listan niistä.

Sekoita({"pataA", "herttaA", "ristiA", "ruutuA" })
 → {"herttaA", "ristiA", "pataA", "ruutuA"}

SatunnainenAlkio(RandomElement)-komento poimii satunnaisen alkion.

SatunnainenAlkio({"pataA", "herttaA", "ristiA", "ruutuA"})
 → pataA

Arpominen luvuista 1, 2, …, 666 olisi onnistunut myös komennolla

Satunnaisluku(1, 666)
 → 42

Lajittele (Sort) lajittelee, sen muuttujana olevan listan pienemmyysjärjestykseen. Jos listan alkiot ovat tekstiä, niin ne aakkostetaan.

Lajittele({3, 2, 1})
 → {1, 2, 3}

Järjestysarvo(OrdinalRank)-komento liittyy lukuarvojen suuruusjärjestykseen. Minulle ei tule mieleen tilannetta, jossa tätä tarvitsee käyttää, mutta ehkäpä jonain päivänä tätäkin tarvitaan. Järjestysarvo kertoo sen järjestysluvun, mikä alkioilla olisi ollut kun ne järjestetään pienemmyysjärjestykseen. Tasapelejä ei sallita. Oletetaan, että meillä on arvosanoja listassa ja käytetään Järjestysarvo-komentoa.

arvosanat:={4, 8, 5, 7, 7, 10, 7, 9}
 → arvosanat:={4, 8, 5, 7, 7, 10, 7, 9}

Järjestysarvo(arvosanat)
 → {1, 6, 2, 3, 4, 8, 5, 7}

Nyt tiedän, että arvosana 4 on pienin eli ensimmäinen, arvosana 8 on kuudes, arvosana 5 on toinen kyseisessä listassa.

Käytetään samaa listaa JaettuSijoitus(TiedRank)-komennolla. Nyt tasapelit on sallittu.

JaettuSijoitus(arvosanat)
 → {1, 6, 2, 4, 4, 8, 4, 7}

JaettuSijoitus-komennon luvut 4 kertovat, että arvosanat 7 ovat tasapelillä sijalla 4 ja arvosana 8 (joka oli toisena ensimmäisessä listassa) on sijalla 6.

Summa ja tulo

Summa(Sum) laskee jonon alkioiden summan. Summassa voi käyttää myös Jono-komennon  kaltaista syntaksia Summa( <Lauseke>, <Muuttuja>, <Alkuarvo>, <Loppuarvo> ).

L
 → {(-5), (-2), 1, 4}

Summa(L)
 → -2

Summa(Jono(1, 42))
 → 903

Summa(i, i, 1, 42)
 → 903

Tulo(Product) on kertolaskua, se toimii kuten Summa-komento.

Tulo(L)
 40

Tulo(i, i, 1, 42)
 → 1405006117752879898543142606244511569936384000000000

 

Yhdiste ja leikkaus

Tiivistä(Flatten)-komento tekee yhden lista useamman listan alkiosta. Käytännössä Tiivistä poistaa kaikki sisemmät aaltosulkeet listojen listasta.

Tiivistä({L, {L,{L}}, {1,2,3, {3, 2,1}}})
 → {(-5), (-2), 1, 4, (-5), (-2), 1, 4, (-5), (-2), 1, 4, 1, 2, 3, 3, 2, 1}

Yhdiste(Union) vastaa joukko-opin yhdistettä. Se yhdistää listat ja samalla poistaa ylimääräiset samat alkiot.

Yhdiste({1,2,2,3,3,3},{2, 3, 4, 5, 5})
 → {1, 2, 3, 4, 5}

YhteisetAlkiot(Intersection) vastaa joukko-opin leikkausta. Se tuottaa listan niistä alkioista, jotka ovat molemmissa listoissa.

YhteisetAlkiot({1,2,2,3,3,3},{2, 3, 4, 5, 5})
 → {2, 3}

Frekvenssi ja histogrammi

Frekvenssi(Frequency)-komento palauttaa listan, jossa on syötelistan alkioiden lukumäärät. Tällä komennolla on runsaasti erilaisia syötemahdollisuuksia.

Frekvenssi({(-5), (-2), 1, 4, (-5), (-2), 1, 4, (-5), (-2), 1, 4, 1, 2, 3, 3, 2, 1})
 →{3, 3, 5, 2, 2, 3}

Nyt tiedän, että lukuja -5 on 3 kappaletta, lukuja -2 on 3 kappaletta, ykkösiä on 5 ja niin edelleen. Luodaan luokkarajalista Jono-komennolla ja käytetään sitä frekvenssi-komennon ensimmäisenä syötteenä.

rajat:=Jono(n-.5,n, -5, 5)
 →rajat:={-5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5}

arvot≔Frekvenssi(rajat, {(-5), (-2), 1, 4, (-5), (-2), 1, 4, (-5), (-2), 1, 4, 1, 2, 3, 3, 2, 1} )
 →arvot≔{3, 0, 0, 3, 0, 0, 5, 2, 2, 3}

Näin saatuja listoja voi käyttää Histogrammi(Histogram)-komennon kanssa tuottamaan jakauman histogrammin piirtoalueelle.

Histogrammi(rajat,arvot)
 →18

Histogrammin saa näkymään CASissa kun klikkaa solun vasemmassa reunassa olevaa pallukkaa. Luku 18 on histogrammin muodostaman monikulmion pinta-ala.

Tässä vaiheessa on muistutettava, että GeoGebran taulukkolaskenta ja Yhden muuttujan analyysi -työkalu helpottaa huomattavasti tilastollisen aineiston käsittelyä.

Kuva2

Datafunktio

Datafunktio(Datafunction) tuli GeoGebraan sensorit-hankkeen myötä. Fysiikan ja kemian opettajien kannattaa tutustua tähän funktioon, vaikka sen toiminnallisuus ei hivele täydellisyyttä. Ajatuksena on ollut käyttää mobiililaitteista saatavaa anturidataa GeoGebran kanssa. Unkarilainen hanke on ollut käsittääkseni jäissä EU-rahoituksen puutteen myötä muutaman vuoden. Komento piirtää x-koordinaatti- ja y-koordinaatti -listasta kuvaajan ja muodostaa murtoviivan pisteiden välille. Peräkkäisten mittauspisteiden muodostavien janojen avulla saadaan integroituva, mutta ei derivoituva funktio. Tämä on yleinen tapa runsasta mittausdataa käyttävien ohjelmien kanssa. Datafunktion luomaa funktiota voi tutkia myös Funktion analysointi -työkalulla.

Luodaan paikka-niminen lista taulukkolaskentaan tuodusta mittausdatasta. Tätä funktiota tutkiessani havaitsin, että se ei toimi CAS:issa määriteltynä siten kuin haluan. Tämänkin ymmärtää, että runsaan datamäärän kanssa työskennellessä tarkat arvot eivät ole enää mielenkiintoisia. Niinpä pitää käyttää syöttökenttää. Alla oleva mittausdata on tuotu taulukkolaskentaan (hiiren oikea painike ja Tuo datatiedosto…). Sieltä valittu alue on määritelty paikka-nimiseksi pistelistaksi Luo pistelista-työkalun avulla.

paikka
 → { (0, 0.029), (0.05, 0.029), (0.1, 0.036), (0.15, 0.044), (0.2, 0.062), (0.25, 0.082), (0.3, 0.104), (0.35, 0.114), (0.4, 0.135), (0.45, 0.138), (0.5, 0.14)}

Datafunktio vaatii syötteekseen x-koordinaattilistan ja y-koordinaattilistan.

Datafunktio(x(paikka), y(paikka))
→ f(x) := Datafunktio[x]

Piirtoalueelle ilmestyy pisteet näkyy kuvaaja ja Algebraikkunassa näkyy uusi funktio.

Tälle funktiolle voi laske arvoja ja määrittää integraaleja. Jostain kumman syystä reunat eivät voi olla päätepisteiden x-arvojen suuruisia. Tämän funktion tutkiminen käynee helpoimmin Funktion analysointi-työkalun avulla. Syöttökenttä tuottaa

f(0.2)
→  0.062

Integraali(f, 0.1, 0.49)
≈ 0.037

Kuva3

Pudotusvalikko

Listan saa toimimaan pudotusvalikkona. Määritellään ensin lista, jossa on eri funktioita

arvot≔ {x, 2x, x², 2x²}
 → arvot≔ {x, 2x, x², 2x²}

Listasta saa pudotusvalikon, kun avaa Algebraikkunassa hiiren oikean painikkeen avulla lista ominaisuudet ja ruksaa kohdan Lista pudotusvalikkona. Piirtoalueelle ilmestyy pudotusvalikko. Komentojen ValittuAlkio(SelctedElement), ja ValittuIndeksi(SelectedIndex) avulla saadaan pudotusvalikosta valittu alkio tai sen indeksi muuttujan arvoksi. Jos arvot -pudotusvalikosta on valittuna x2 , niin

f(x):=ValittuAlkio(arvot)
 → f(x)≔ x²

indeksi:=ValittuIndeksi(arvot)
 → indeksi:=3

Samalla piirtoalueelle ilmestyy funktion f(x) = x² kuvaaja.

Kuva4png


[17.5. korjasin kirjoitusvirheitä ja muokkasin Datafunktio-lukua]

Helppo menetelmä lisätä kieliä GeoGebra-työkirjaan

Maaliskuussa 2018 noin 10 pohjoismaista GeoGebra opettajaa saapui Helsinkiin Pohjoismaisen GeoGebra -verkoston seminaariin. Tapaamisemme liittyi Reykjavikin VIII Nordic/Baltic GeoGebra konferenssin teemaan siirtolaisuus ja matematiikan oppiminen.

Tapaamisemme merkittävin tuotos oli menetelmä, jonka avulla on suhteellisen helppoa lisätä eri kielien käännöksiä GeoGebra työkirjaan. Esitän tässä mitä keksimme. Käytän apuna fysiikan sovellusta ”Liikkeen perusprobleema” (kiitos Jussi alkuperäisestä ideasta, tämä on pieni häive siitä Java-ohjelmasta, jonka loit joskus 90-luvulla). Siinä on kolme käännettävää tekstiä: kiihtyvyys, nopeus ja kuljettu matka. Unohdin käännättää kiihtyvyyden, joten unohdetaan se. Toki lopulliseen versioon oli tulossa yksiköt mukaan :o)

eka.png

Loimme seminaarissamme Google Sheets-tiedoston, jonne lisäsimme käännettäviä sanoja ja virkkeitä ja käänsimme ne omille äidinkielillemme. Teoriassa tämä tiedosto voisi olla julkinen tai ainakin julkinen kaikille kääntäjille. Minä lisäsin taulukkoon distance, matka, velocity, ja nopeus. Pohjoismaiset vieraamme käänsivät muut kielet.

Help_us_translate_-_Google_Sheets.png

Valitsin oheisessa taulukossa alueen A6:G7 ja kopioin sen. Avasin GeoGebran ja Näytä -valikosta taulukkolaskennan. Sijoitin solusta B2 alkaen. Kopioin Google Sheetsistä alueen A1:G1 ja sijoitin GeoGebran taulukkoon soluun alueelle A1:G1.

Seuraavaksi loin tarvittavat listat, jossa käännökset ja kielten nimet ovat tekstinä. Tämä onnistui, kun valitsin GeoGebra työkirjassa alueen (miksiköhän tein ne tässä järjestyksessä, en muista) A2:G2 ja valitsin työkalun Luo Lista. Annoin listalle nimen L_1. Vastaavalla tavalla loin listat L_2 (matka) ja L_3 (kieli). Algebraikkunassa näkyi listojen arvot.

kielet.png

Valitsin listanL_3 ja hiiren oikealla painikkeella sain näkyviin listan ominaisuudet. Sieltä klikkasin Piirrä pudotusvalikkona. Piirtoalueelle ilmestyi pudotusvalikko.

listan ominaisuudet.png

Seuraavaksi loin muuttujan, joka kertoi pudotusvalikosta valitun kielen indeksin. Kirjoitin syöttökenttään
a = ValittuIndeksi(L_3). Kun islanninkieli oli valittuna a:n arvo oli 4.

Valittua kieltä vastaavat käännöksille annoin nimet mat ja nop. Ne määriteltiin Alkio-komennolla. Alkio(lista, n) valitsee  listan n:n alkion.
mat = Alkio(L_1, a)
nop = Alkio(L_2, a).

Tekstialueelle valitsin Objektit-valikosta muuttujan mat, kirjoitin =-merkin ja Objektit valikosta nopeus-muuttujan, joka oli jo aiemmin määritelty nopeuden arvo. Lisäsin myös yksikön. Valitsin ruksin Latex-kaavan kohdalle, näin varmistan, että poikkiviivat \\ tuottavat rivinsiirron. Latex koodi \; on välilyönti. Samalla tavoin määritin nopeusrivin.

Teksti_ja_material-NpTdSgF4_ggb_ja_Edit_Post_‹_Mikon_fysiikka_ja_matikka_—_WordPress_com.png

Lopuksi suljin ylimääräiset ikkunat ja julkaisin työkirjan GeoGebra Materiaaleissa. Tiedosto löytyy osoitteesta https://ggbm.at/rDy3FTV2. Lataa tiedosto omalle koneellesi ja tutki tiedostoa.

Speed__distance_translated_-_GeoGebra

Kiitokset tämän menetelmän luomisesta kuuluvat kaikille GeoGebra-seminaariin osallistuneille: Freyja, Susanne, Per Magnus, Sirje, Kaja, Hannes, Janika, Camilla, Jonas, Anders, Svetlana, Hannu, Lauri ja minä.

Meinasi unohtua, Svetlana ja Anders käänsivät yhden oman hieman monimutkaisemman tiedoston ja tekivät videon miten käännös tuotettiin. https://ggbm.at/hXAkT8p8

Mikko

[edit 8.3. korjasin kirjoitusvihreitä]